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Abstract. The calibration QED process cross sections for experiments on planned electron–photon and
photon–photon colliders for detecting small angle scattered particles are calculated. These processes de-
scribe the creation of two jets moving sufficiently close to the beam axis directions. The jets containing two
and three particles including charged leptons, photons, and pseudoscalar mesons are considered explicitly.
Considering the pair production subprocesses we take into account both bremsstrahlung and double photon
mechanisms. The obtained results are suitable for further numerical calculations.
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1 Introduction

QED processes of the type 2→ 3, 4, 5, 6 at colliders of high
energies have attracted both theoretical and experimental
attention during the last four decades. Accelerators with
high-energy colliding e+e−, γe, γγ and µ+µ− beams have
been designed and widely used to study the fundamental
interactions [1–4]. Some processes of quantum electrody-
namics (QED) can play an important role at these collid-
ers, especially those inelastic processes whose cross section
does not drop with increasing energy. The planned collid-
ers will be able to work with polarized particles, so these
QED processes are required to be described in more detail,
including the calculation of cross sections with definite he-
licities of the initial particles – leptons (l= e or µ) and pho-
tons γ. These reactions have the form of a two-jet process
with the exchange of a virtual photon γ∗ in the t-channel
(see Fig. 1).
Much attention was paid in the literature to the cal-

culation of helicity amplitudes of QED processes at high-
energy colliders (see [5] and references therein). Keeping
in mind the physical programs at planned γγ and lep-
ton γ colliders, precise knowledge of a set of calibration
and monitoring processes is needed. This refers to cali-
bration processes as well as to QED processes with suffi-
ciently large cross sections and clear signatures for detec-
tion. Rather rich physics can be investigated in peripheral
processes such as heavy leptons and mesons (scalar and
pseudoscalar) creation, where the relevant QED monitor-
ing processes must be measured.
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Let us recall the general features of peripheral pro-
cesses, namely, the important fact of their nondecreasing
cross sections in the limit of high total energies

√
s in the

center of mass frame of the initial particles. The possibility
of measuring the jets containing two or three particles can
be relevant. This is a motivation of our paper.
It is organized in the following way.
In Sect. 2, the kinematics of peripheral processes is

briefly described.
In Sect. 3, the impact factors describing the conversion

of the initial photon to a pair of charged particles (fermions
or spinless mesons) with or without an additional hard
photon are calculated.
In Sects. 4–6 a similar calculation is made for the initial

polarized electron and photon; in particular, such subpro-
cesses as the single and double Compton process and the
processes of pair creation are considered.

Fig. 1. The processes γγ, γl (l = e, µ) with the exchange of
a virtual photon γ∗ in the t-channel
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As the helicity amplitudes for subprocesses of type
2→ 3 have in general a complicated form, we do not write
explicit expressions for the corresponding cross sections,
indicating only the strategy to obtain them.

2 Kinematics

Throughout the paper it is implied that the energy frac-
tions of a jet component are positive quantities of the order
of unity (the sum of energy fractions of each jet is unity)
and the values of the components of their 3-momenta
transversal to the beam direction are much larger than
their rest masses. So we neglect the mass of jet particles.
The corresponding amplitudes include a large amount

of Feynman diagrams (FD). Fortunately, in the high-
energy limit the number of essential FD contributing to
the “leading” approximation greatly reduces. The method
used permits one to estimate the uncertainty caused by
“nonleading” contributions that have the following magni-
tudes of order:

m2

s1
,
s1

s
,
s2

s
,
α

π
ln
s

m2
, (1)

where s1,2 are the jet invariant mass squares to be com-
pared with the terms of the order of unity. The last term
in (1) is caused by the absence of radiative corrections in
our analysis. The angles θi of particle emission with respect
to the corresponding direction of motion of the projectile is
assumed to be of the order of (see Fig. 2)

mi√
s
� θi ∼

√
si
√
s
� 1 , (2)

wheremi is the typical mass of the jet particle.
In this approach we consider the initial particles (hav-

ing the 4-momenta p1, p2) as massless and use the Sudakov
parameterization of the 4-momenta of any particle of the
problem:

qi = αip2+βip1+ qi⊥ , (3)

qi⊥p1,2 = 0 , q
2
i⊥ =−q

2
i < 0 .

The Sudakov parameters βi are quantities of the order of
unity for the momenta of the particles belonging to jet1
and obeying the conservation law

∑
jet1 βi = 1, whereas

the components of the jet1 particle momenta along the
4-momentum p2 are small positive numbers that can be
determined from the on mass shell conditions of the jet1
particles, q2i = sαiβi−q

2
i = 0, αi = q

2
i /(sβi)� 1.

Fig. 2. The scheme of collision of initial beams with detection
of two jets moving in the cones within the angles θ

The same is valid for the 4-momenta of the par-
ticles belonging to jet2, namely, αj ∼ 1,

∑
jet2 αj = 1,

βj = q
2
j /(sαj)� 1.

Among the large amount of FD describing the process
in the lowest (Born) order of perturbation theory (PT)
(tree approximation), only those survive (i.e., give con-
tributions to the cross section that do not decrease with
increasing s) that have a photonic t-channel one-particle
state.
It is known [6] that the matrix elements of the periph-

eral processes have a factorized form and the cross section
can be written in terms of the so-called impact factors,
each of which describe the subprocess of the interaction of
the internal virtual photon with one of the initial particles
to produce a jet moving in a direction close to this pro-
jectile momentum. So the problem can be formulated in
terms of the computation of impact factors. For processes
with initial photons with a definite state of polarization de-
scribed in terms of Stoke’s parameters, we construct the
relevant chiral matrices from bilinear combinations of chi-
ral amplitudes. The last step consists in the construction of
differential cross sections.
The matrix element that corresponds to the main

(“leading”) contribution to the cross section has the form

M = iJµ1
gµν

q2
Jν2 , (4)

where Jµ1 and J
ν
2 are the currents of the upper (associ-

ated with jet1) and lower blocks of the relevant Feynman
diagram, respectively, and gµν is the metric tensor. The
current Jµ1 describes the scattering of an incoming particle
of momentum p1 with a virtual photon and the subsequent
transition to the first jet (and similar for Jν2 ). The matrix
elements (4) can be written in the form (see the appendices
in [6])

M = 2i
s

q2
I1I2, (5)

I1 =
1

s
Jµ1 p2µ, I2 =

1

s
Jν2 p1ν .

In fact, this follows from the Gribov representation of the
metric tensor,

gµν =
2

s
(pµ2p

ν
1 +p

ν
2p
µ
1 )+ g

µν
⊥ ≈

2

s
pµ2p

ν
1 . (6)

The invariant mass squares of jets can also be expressed
in terms of the Sudakov parameters of the exchanged pho-
ton,

q = αp2+βp1+ q⊥ ,

(q+p1)
2 = s1 =−q

2+ sα ,

(−q+p2)
2 = s2 =−q

2− sβ ,

q2 = sαβ−q2 ≈−q2 . (7)

Here and below, by the symbol ≈ we mean the equation
with neglect of the terms that do not contribute to the limit
s→∞.
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The singularity of the matrix element (5) at q= 0 is fic-
titious (excluding elastic scattering). In fact, one can see
that it cancels due to the current conservation:

qµJ
µ
1 ≈ (αp2+ q⊥)µJ

µ
1 = 0 , p2µJ

µ
1 =

s

sα
qJ1 , (8)

qνJ
ν
2 ≈ (βp1+ q⊥)νJ

ν
2 = 0 , p1νJ

ν
2 =

s

sβ
qJ2 . (9)

We arrive at the modified form of the matrix element of
a peripheral process:

M(a(p1, η1)+ b(p2, η2))→ jet1λ1 +jet2λ2

= i(4πα)
n1+n2
2
2s

q2
m
η1
1λ1
m
η2
2λ2
, (10)

ηi, λi =±1; η1,2 ≥ 2,

where ηi, describe the polarization states of the projectile
i= a, b; λi describes the polarization states of the partici-
pants of its initiated jet. The numbers of QED vertices in
the upper and lower blocks of FD (see Fig. 1) are denoted
by n1,2.
We give here two alternative forms for the matrix elem-

ents m1,2 of the subprocesses γ
∗(q)+a(p1, η1)→ jet1(λ1)

and γ∗(q)+ b(p2, η2)→ jet2(λ2):

m
η1
1λ1
=
qJη11λ1
s1+q2

(11)

mη11λ1 =
1

s
p2µJ

η1µ
1λ1
, (12)

and similar expressions hold for the lower block.We use the
second representation (12). The form (11) can be used as
a check of the validity of gauge invariance, namely, turning
the matrix elements to zero in the limit q→ 0.
A remarkable feature of the peripheral processes is that

their differential cross sections do not depend on the total
center of mass energy

√
s. To see this property, let us first

rearrange the phase volume dΦ of the final two-jet kine-
matics state to a more convenient form:

dΦ= (2π)4δ4

⎛

⎝p1+p2−
∑

i

p
(1)
i −

∑

j

p
(2)
j

⎞

⎠

× dF (1)dF (2)

= (2π)4d4qδ4(1)δ
4
(2)dF

(1)dF (2) , (13)

δ4(1) = δ
4

(

p1+ q−
∑

i

p
(1)
i

)

,

δ4(2) = δ
4

⎛

⎝p2− q−
∑

j

p
(2)
j

⎞

⎠ ,

dF(1,2) =
∏

i

d3p
(1,2)
i

2ε
(1,2)
i (2π)3

.

Using Sudakov’s parameterization for the transferred
4-momentum q phase volume,

d4q =
s

2
dαdβd2q⊥ =

1

2s
ds1ds2d

2q⊥ , (14)

with s1,2 being the invariant mass squares of the jets, we
put the phase volume in the factorized form

dΦ=
(2π)4

2s
d2q⊥ds1dF

(1)δ4(1)ds2dF
(2)δ4(2) . (15)

Using the modified form of the matrix element and the
phase volume for the peripheral process cross section in the
case of polarized initial particles (photons or electrons), we
have

dση1η2 =
αn1+n2π2(4π)2+n1+n2 d2q⊥

(q2)2
Φ
η1
1 (q)Φ

η2
2 (q) ,

(16)

with the impact factors Φηii in the form

Φ
ηi
i (q) =

∫

dsi
∑

λj

|mηiiλj |
2dFiδ

4
(i) , i= 1, 2 . (17)

The matrix elements with the definite chiral states of
all particles m

ηi
i(λ), where the subscript (λ) denotes the set

of chiral parameters of the final state, are calculated and
listed below.
In the case of initial polarized photons the description

in terms of Stoke’s parameters ξ1,2,3, ξ
2
1 + ξ

2
2 + ξ

2
3 ≤ 1 is

commonly used. The matrix element squared on the r.h.s.
of (17) must be replaced by [7]

Tγ = Sp(Mρ)

=
1

2
Sp

(
m++ m+−

m−+ m−−

)(
1+ ξ2 iξ1− ξ3
−iξ1− ξ3 1− ξ2

)

,

(18)

with the spin matrixM elements

m++ =
∑

λ

∣
∣
∣m+(λ)

∣
∣
∣
2

, m+− =
∑

λ

m+(λ)

(
m−(λ)

)∗
,

(19)

m−− =
∑

λ

∣
∣
∣m−(λ)

∣
∣
∣
2

, m−+ =
(
m+−

)∗
.

We choose λ=+1 for the initial fermion

Te =
∑

λ

∣
∣m+λ
∣
∣2 . (20)

The cross sections dσn1,n2 of the process of type 2→ n1+
n2 with production of two jets,

a(p1, η1)+ b(p2, η2)→ a1(r1λ1)+ · · ·+an1(rn1 , λn1)

+ b1(q1, σ1)+ · · ·+ bn2(qn2 , σn2) ,
(21)

where the energy fractions are denoted x1, . . . xn1 ,
∑
xi =

1, and the transversal components of the momenta are
r1, . . . rn1 , and

∑
ri = q of jet a and similar for the quan-

tities yi,qi,
∑
yi = 1,

∑
qi =−q, for the other jet b, have
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the form

dσ22 =
α4

22π4
T
(1)
2 T

(2)
2

d2q

(q2)2
d2r1d

2q1
dx1dy1
x1x2y1y2

, (22)

dσ23 =
α5

24π6
T
(1)
2 T

(2)
3

d2q

(q2)2
d2r1d

2q1d
2q2
dx1dy1dy2
x1x2y1y2y3

,

(23)

dσ33 =
α6

26π8
T
(1)
3 T

(2)
3

d2q

(q2)2
d2q1d

2q2d
2r1d

2r2

×
dx1dx2dy1dy2
x1x2x3y1y2y3

. (24)

3 Subprocesses γ�γ→ e+e�, π+π�

Let us consider first the contribution to the impact factor
of the photon from the lepton pair production subprocess

γ(k1, η)+γ
∗(q)→ e−(q−, λ)+ e

+(q+,−λ) .

The matrix element of the subprocess has the form (we
suppress the factor 4πα)

mηµ1λ =−ūλ(q−)

[

ε̂η
q̂−− k̂1
κ1−

γµ+γµ
−q̂++ k̂1
κ1+

ε̂η

]

vλ(q+),

ūλ = ūω−λ , vλ = ω−λv . (25)

We imply all the particles to be massless. A definite chi-
ral state initial photon polarization vector has the form [8]

ε̂λ1 =N1
[
q̂−q̂+k̂1ω−λ− k̂1q̂−q̂+ωλ

]
, (26)

where

N21 =
2

s1κ+κ−
, s1 = 2q+q− , κ1± = 2k1q± . (27)

The chiral amplitudesmηλ = (1/s)m
ηµ
1λp2µ have the form

m+1+ =−
N1

s
ūq̂+q̂p̂2ω+v ,

m+1− =−
N1

s
ūp̂2q̂q̂−ω−v ,

m−1− =−
N1

s
ūq̂+q̂p̂2ω−v ,

m−1+ =−
N1

s
ūp̂2q̂q̂−ω+v . (28)

The elements of the spin matrixM in the case of lepton
pair production are

m++
e+e−

=m−−
e+e−

=
2q2

q2+q
2
−
x+x−(x

2
++x

2
−) , (29)

m+−
e+e−

= (m−+
e+e−

)∗ =−
4q2

q2+q
2
−

(x+x−)
2e2iθ ,

x± are the energy fractions carried out by pair compo-
nents, x++x− = 1, and θ is the angle between two Eu-
clidean vectors q= q−+q+ andQ= x+q−−x−q+.
In the case of charged pion pair production

γ(p1, e
η
1)+γ

∗(q)→ π+(q+)+π
−(q−) , (30)

we have

mη =
1

s
εη1νp

µ
2m

ν
µ =

x+

p1q−
εη1q−+

x−

p1q+
εη1q+−

2

s
(εη1p2) .

(31)

Using the photon polarization vector written as

εη1µ =N1

[
(q+p1)q−µ− (q−p1)q+µ+iηεµαβγq

α
−q
β
+p
γ
1

]

(32)

we obtain the chiral amplitude of the pion pair produc-

tion process (we define (p1p2q−q+) = εαβγδp
α
1 p
β
2q
γ
−q
δ
+ =

(s/2)[q−q+]z):

mη =−N1(Qq+iη[Q,q]z) =−N1|q| |Q|e
iηθ, θ = q̂Q .

(33)

where we imply the z axis direction to be along the photon
3-vector, and we use the relation [q−,q+]z = [Q,q]z . For
the pion chiral matrix we have

m++
π+π−

=m−−
π+π−

=
2q2

q2+q
2
−

(x+x−)
2 ,

m+−
π+π−

= (m−+
π+π−

)∗ =
2q2

q2+q
2
−

(x+x−)
2e2iθ . (34)

For the two-pair production process

γ1(p1, ξ1)+γ2(p2, ξ2)→ a(q−)+ ā(q+)+ b(p−)+ b̄(p+),

q± = α±p2+x±p1+ q±⊥, p± = y±p2+β±p1+p±⊥ ,
(35)

the differential cross section (assuming that the pair aā
moves along the 1 direction of the photon, and the pair bb̄
moves along the 2 direction) has the form (22) with

T (1) =
q2

q2+q
2
−

(x+x−)
2[1− ξ3 cos(2θ)+ ξ1 sin(2θ)]

for π+, π− , (36)

T (1) =
q2

q2+q
2
−

(x+x−)

×
{
x2++x

2
−+2x+x−[ξ3 cos(2θ)+ ξ1 sin(2θ)]

}

for e+, e− , (37)

and a similar expression holds for T (2)1. We recall that
the formulae obtained are valid at a large transverse com-
ponent of the jet particles, compared to the masses of the
particles,

q2− ∼ q
2
+ ∼ p

2
+ ∼ p

2
−	m

2,

q+ = q−q−, p+ =−q−p−, (38)

1 In [9] (37) contains a misprint in the sign of ξ
(1,2)
3 .
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and finite energy fractions x± ∼ y± ∼ 1, which correspond
to the emission angles of jet particles θi = |qi|/(xiε)	m/ε
that are considerably larger than the mass to energy ratio.

4 Subprocesses γ�γ→ e+e�γ, π+π�γ

Here and below for subprocesses of type 2→ 3 we restrict
ourselves to calculation of the chiral amplitudes and check-
ing their gauge invariance properties.
The subprocess

γ(k, λ)+γ∗(q)→ e+(q+,−λ−)+ e
−(q−, λ−)+γ(k1, λ1)

is described by six FD. A standard calculation of the chiral
amplitudesmλλ1λ− leads to

m+++ =−
s1NN1

s
ū(q−)q̂+q̂p̂2ω+v(q+) = (m

−
−−)

∗ ,

m++− =−
s1NN1

s
ū(q−)p̂2q̂q̂−ω−v(q+) = (m

−
−+)

∗ ,

m+−+ =
NN1

s
ū(q−)A

+
−+ω+v(q+) = (m

−
+−)

∗ ,

m+−− =
NN1

s
ū(q−)A

+
−−ω−v(q+) = (m

−
++)

∗ , (39)

with A+−−(k, k1) =A
+
−+(−k1,−k)

N2 =
2

s1κ−κ+
, N21 =

2

s1κ1+κ1−
,

s1 = 2q+q−, κ± = 2kq±, κ1± = 2k1q± , (40)

and a rather cumbersome expression for A+−+:

A+−+ =
s1

(q+− q)2
k̂q̂+k̂1(−q̂++ q̂)p̂2

− q̂+(q̂−− k̂)p̂2(q̂++ k̂1)q̂−

−
s1

(q−− q)2
p̂2(q̂−− q̂)k̂q̂−k̂1 . (41)

Substituting

p̂2 ≈
1

α
(q̂− q̂⊥) =

s

sα

[
q̂++ k̂1+(q̂−− k̂)− q̂⊥

]
,

in the second term of the r.h.s. of (41) we have

A+−+ =−ss1κ1+

[
x+

(q+− q)2
+
1

sα

]

k̂

− ss1κ−

[
x−

(q−− q)2
+
1

sα

]

k̂1

+
s1

(q+− q)2
k̂q̂+k̂1q̂⊥p̂2+

s1

(q−− q)2
p̂2q̂⊥k̂q̂−k̂1

+
s

sα
q̂+(q̂−− k̂)q̂⊥(q̂++ k̂1)q̂− , (42)

with

(q±− q)
2 =−q2+2qq±− sαx±,

sα=
k21
x1
+
q2−
x−
+
q2+
x+
,

x1+x−+x+ = 1, κ± =
q2±
x±
,

κ1± =
1

x1x±
(x1q±−x±k1)

2 . (43)

The gauge property that the chiral amplitudes must vanish
as q→ 0 can be seen explicitly.
A further procedure of constructing the chiral matrix is

straightforward and can be performed in terms of simple
traces. We will not touch upon this here.
Consider the subprocess

γ(k, λ)+γ∗(q)→ π+(q+)+π
−(q−)+γ(k1, λ1) .

There are 12 FD describing a rather cumbersome expres-
sion for the matrix element. It can considerably be sim-
plified on using the modified expressions for the photon
polarization vectors in the form [11, 12]

ελµ(k) =
N

2
Spγµq̂−q̂+k̂ωλ , ε

λ1
µ (k1) =

N1

2
Spγµq̂−q̂+k̂1ωλ ,

(44)

with the same expressions for N,N1 as in the case of the
γγ∗→ e+e−γ subprocess. Polarization vectors chosen in
such a form satisfy the Lorentz condition
ε(k)k = 0, ε(k1)k1 = 0 and the gauge condition ε(k)q− =
ε(k1)q− = 0.
The matrix element has the form (we lost Bose symme-

try at this stage)

mλλ1 =
1

s
pρ2ε

µ(k)ε∗σ1 (k1)Oρµσ

=
4x−

(q−− q)2

[
(ε1q+)(εq)

κ1+
−
(ε1q)(εq+)

κ+

]

+
4(εp2)(ε1q+)

sκ1+
−
4(ε1p2)(εq+)

sκ+

+(εε1)

[
x+

(q+− q)2
−

x−

(q−− q)2

]

, (45)

where we imply ε = ελ, ε1 = ε
λ1
1 and x± = 2p2q±/s, x1 =

2p2k1/s, where x++x−+x1 = 1.
For λ1 = λ we have

mλλ = s1NN1[A1+iλB1] , A1 =−Qq, B1 = [Qq]z .
(46)

In the case of opposite chiralities we have

mλ−λ = s1NN1[A+iλB],
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A=−Qq+
1

2x1x−x+

[
Q2k21−q

2
−(x1q+−x+k1)

2

−q2+(x1q−−x−k1)
2
]
(

x+

(q+− q)2
−

x−

(q−− q)2

)

,

B =

(
x+

(q+− q)2
+

x−

(q−− q)2

)

(sα[q−q+]z− sα−[qq+]z

+sα+[qq−]z)+2[q−q+]z− [Qq]z ,

sα± =
q2±
x±
, sα=

k21
x1
+ sα++ sα− . (47)

We can see that Bose symmetry is restored.

5 Subprocesses eγ�→ eγ; e+γ+γ

Consider first the Compton subprocess2

γ∗(q)+ e(p, λ1)→ γ(k, λ)+ e(p
′, λ1) .

For the chiral matrix elements we have (we chose λ1 =+1)

m+λ =
N

s
ū(p′)

[
−p̂ωλ(p̂

′+ k̂)p̂2− p̂2(p̂− k̂)p̂
′ω−λ

]
ω+u(p) ,

m++ =−
N

s
ū(p′)p̂q̂p̂2ω+u(p) ,

m+− =−
N

s
ū(p′)p̂2q̂p̂

′ω+u(p) . (48)

The sum of the moduli square of the matrix elements is

Te =
∑

λ

|m+λ |
2 = 2

q2

κκ′
[1+ (1−x)2] , (49)

with

κ= 2kp=
k2

x
, κ′ = 2kp′ =

1

x(1−x)
(p′x−k(1−x))2 ,

(50)

and x= 2kp2/2p1p2 and 1−x are the energy fractions of
photon and electron in the final state.
Consider now the double Compton subprocess (see

Fig. 3a)

e(p, η)+γ∗(q)→ e(p′, η)+γ(k1, λ1)+γ(k2, λ2) .
(51)

The chiral matrix elementsmηλ1λ2 are

m+++ = (m
−
−−)

∗ =−
s1N1N2

s
ū(p′)p̂q̂p̂2ω+u(p), (52)

m+−− = (m
−
++)

∗ =−
s1N1N2

s
ū(p′)p̂2q̂p̂

′ω+u(p),

m++− = (m
−
−+)

∗ =
N1N2

s
ū(p′)A++−ω+u(p),

m+−+ = (m
−
+−)

∗ =
N1N2

s
ū(p′)A+−+ω+u(p) ,

2 The case of real initial photons was considered in [10].

with A+−+(k1, k2) =A
+
+−(k2, k1) and

A++−(k1, k2) =
s1

(p′− q)2
p̂2(p̂

′− q̂)k̂1p̂
′k̂2

+ p̂(p̂′+ k̂1)p̂2(p̂− k̂2)p̂
′

+
s1

(p+ q)2
k̂1p̂k̂2(p̂+ q̂)p̂2 , (53)

with

s1 = 2pp
′, N2i =

2

s1κiκ
′
i

, κi = 2pki, κ
′
i = 2p

′ki .

(54)

To see the gauge invariance property of the two last am-
plitudes, we make the substitution p2 = (q− q⊥)/αq in the
second term of the r.h.s. and arrive at the form

A++−(k1, k2) = ss1κ
′
1

(
x′

(p′− q)2
+
1

sαq

)

k̂2

+ ss1κ2

(
1

(p+ q)2
−
1

sαq

)

k̂1

+
s1

(p+ q)2
k̂1p̂k̂2q̂⊥p̂2−

s1

(p′− q)2
p̂2q̂⊥k̂1p̂

′k̂2

− p̂(p̂′+ k̂1)q̂⊥(p̂− k̂2)p̂
′ s

sαq
. (55)

We can verify that this expression turns to zero at q= 0. In
fact, we can use

(p′− q)2 =−q2+2p′q− sx′αq,

(p+ q)2 =−q2+ sαq, αq = α
′+α1+α2,

x′+x1+x2 = 1, sα
′ =
(sp′)2

x′
, sαi =

k2i
xi
,

κi = sαi, κ
′
i =

1

x′xi
(kix

′−p′xi)
2 . (56)

The further strategy is similar to the one mentioned
above (43).

6 Subprocesses eγ�→ eπ+π�, eµ+µ�

The matrix element of the pion pair production subprocess

e(p, η)+γ∗(q)→ π+(q+)+π
−(q−)+ e(p

′, η)

can be written in the form

mη = ū(p′)[B̂+ D̂]ωηu(p) , (57)

where the bremsstrahlung mechanism contribution is (see
Fig. 3b)

B̂ =
1

q21

[

Bq̂1+
1

s(p+ q)2
q̂1q̂p̂2−

1

s(p′− q)2
p̂2q̂q̂1

]

,

q1 = q++ q−, q2 = p
′
−p1,

D̂ =
1

q22

[

D(2q̂−+ q̂2)−2
x−

(q− q−)2
q̂⊥+

2(q2−2qq−)

s(q− q−)2
p̂2

]

.

(58)
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Fig. 3. Feynman diagrams
describing a the subprocess
γ∗e− → γγe− and the pair
production γ∗e → eaā sub-
process by the bremsstrahlung
b and double photon c mech-
anisms

For the squares of the moduli of the chiral amplitudes,
which enter in (23) and (24), we have

T
(π)
3 = |m+|2 = Sp

(
p̂′(B̂+ D̂)p̂(B̃+ D̃)ω+

)
, (59)

with B andD specified below (62).
For the subprocess of the muon pair production,

e(p, η)+γ∗(q)→ µ+(q+)+µ
−(q−)+ e(p

′, η) , (60)

bremsstrahlung and the two-photon mechanisms must be
taken into account (see Fig. 3b,c):

m+λ =
1

q21
ū(p′)Bµω+u(p)ū(q−)γ

µωλv(q+)

+
1

q22
ū(p′)γνω+u(p)ū(q−)Dνωλv(q+) , (61)

with the double photon mechanism contribution (not con-
sidered in [5])

Dν =Dγν +
1

s(q− q+)2
γν q̂p̂2−

1

s(q− q−)2
p̂2q̂γν ,

and the bremsstrahlung mechanism one

Bµ =Bγµ−
1

s(p′− q)2
p̂2q̂γµ+

1

s(p+ q)2
γµq̂p̂2 ,

with

B =
x
′

(p′− q)2
+

1

(p+ q)2
, D =

x−

(q−− q)2
−

x+

(q− q+)2
,

x± =
2p2q±
s
, x

′
=
2p2p

′

s
, x++x−+x

′
= 1 .

To perform the conversion in the Lorentz indices µ, ν
in (66), one can use the projection operators. In the case of
equal chiralities η = λ=+1 we choose the projection oper-
ator as

P+ =
ū(p)q̂+ω+u(q−)

ū(p)q̂+ω+u(q−)
. (62)

Inserting it and using the relation ω+u(p)ū(p) = ω+p̂, we
obtain

m++ =
−2

ū(p)q̂+ω+u(q−)
ū(p′)

[(
D

q22
+
B

q21

)

q̂−q̂+p̂

+
q̂−q̂+p̂q̂⊥p̂2

s

(
1

q22(q− q+)
2
−

1

q21(p+ q)
2

)

+
p̂2q̂⊥q̂−q̂+p̂

s

(
1

q22(q−− q)
2
−

1

q21(p
′− q)2

)]

×ω+v(q+)

=
−2

ū(p)q̂+ω+u(q)−
ū(p′)A++ω+v(q+) . (63)

In the case of opposite chiralities η =−λ=+1 we use the
projection operator

P− =
ū(p)ω−u(q−)

ū(p)ω−u(q−)
. (64)

Similar calculations lead to the result

m+− =
2

ū(p)ω−u(q−)
ū(p′)

[(
D

q22
+
B

q21

)

2(pq−)

+2
p̂q̂−q̂⊥p̂2

s

(
1

q22(q− q+)
2
+

1

q21(p1− q−)
2

)

−
p̂q̂⊥p̂2q̂−

s

(
1

q22(q− q−)
2
+

1

q21(p+ q)
2

)

−
q̂−p̂2q̂⊥p̂

s

(
1

q22(q− q−)
2
+

1

q21(p+ q)
2

)]

ω−v(q+)

=
2

ū(p)ω−u(q−)
ū(p′)A+−ω−v(q+) . (65)

The property ofA++, A
+
− tending to zero as |q| → 0 is explic-

itly seen from (71) and (72).
For the sum of the squares of the chiral amplitudes en-

tering into (23) and (24), one has

T
(µ)
3 =

∑
|m+λ |

2 =
1

(pq+)(q−q+)
Sp(p̂′A++q̂+Ã

+
+ω+)

+
2

pq−
Sp(p̂′A+−q̂+Ã

+
−ω+) . (66)

The further strategy is straightforward.
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7 Subprocess eγ�→ eeē

The kinematics of the subprocess is defined as

e(p, lp)+γ
∗(q)→ e(p1, l1)+ e(p2, l2)+ ē(p+, t) ,

with li, t=± the chiralities of the initial and final fermions.
Without loss of generality we can put lp =+ below. For the
sum of the chiral states of the moduli square of the relevant
matrix element we obtain

∑∣
∣
∣M

lp
l1l2t

∣
∣
∣
2

= 2
[∣
∣M+++−

∣
∣2+
∣
∣M++−+

∣
∣2+
∣
∣M+−++

∣
∣2
]
.

(67)

Eight Feynman diagrams are relevant, which form four
gauge invariant sets of amplitudes:

M+l1l2t = (4πα)
3
2

(

−
1

s1

)

×
(
δl1,+δt,−l2

[
ūl2(p2)γλv

t(p+)ū
l1Aλu

+(p)

+ūl1(p1)γσū
+(p)ūl2Bσv

t(p+)
]

+ δl2,+δt,−l1
[
ūl1(p1)γηv

t(p+)ū
l2(p2)Dηu

+(p)

+ūl2(p2)γδū
+(p)ūl1(p1)Cδv

t(p+)
])
. (68)

Applying projection operators to provide the conversion on
the vector indices we have

|M+++−|
2 =
(4πα)3

2s21pp+

[
1

p2p+

1

4
Spp̂1m

(1)
++−p̂+(m

(1)
++−)

+

+
1

p+p1

1

4
Spp̂2m

(2)
++−p̂+(m

(2)
++−)

+ 1

p1p+p2p+

×
1

4
Spp̂1m

(1)
++−p̂+(m

(2)
++−)

+p̂2p̂+

]

, (69)

|M++−+|
2 =
(4πα)3

2s21pp2

1

4
Spp̂1m+−+p̂+(m+−+)

+,

|M+−++|
2 =
(4πα)3

2s21pp1

1

4
Spp̂2m−++p̂+(m−++)

+,

with

m+−+ = γσp̂p̂2Bσ+Aλp̂p̂2γλ,

m−++ = γδp̂p̂1Cδ+Dηp̂p̂1γη, (70)

m
(1)
++− =Aλp̂p̂+p̂2γλ+γσp̂p̂+p̂2Bσ,

m
(2)
++− = γσp̂p̂+p̂1Cσ+Dηp̂p̂+p̂1γη,

Aλ =
q̂⊥(p̂1− q̂)γλ
(p1− q)2

+
γλ(p̂+ q̂)q̂⊥
(p+ q)2

,

Bσ =
q̂⊥(p̂2− q̂)γσ
(p2− q)2

+
γσ(q̂− p̂+)q̂⊥
(p+− q)2

,

Cσ =
q̂⊥(p̂1− q̂)γσ
(p1− q)2

+
γσ(q̂− p̂+)q̂⊥
(q−p+)2

,

Dη =
q̂⊥(p̂2− q̂)γη
(p2− q)2

+
γη(p̂+ q̂)q̂⊥
(p+ q)2

. (71)

8 Conclusion

In [9], we wrote down the explicit expressions for the spin
matrix elements Mij for the subprocesses of the type
2→ 2 that are reviewed here. For the subprocesses of the
type 2→ 3 we formulated the algorithm of calculation of
the spin matrix elements. We considered all possibilities
of pair creation in the mentioned subprocesses, as these
were not completely considered in a recent work [5]. The
gauge condition Mij(q)→ 0 for |q| → 0 is explicitly ful-
filled in all cases. The subprocesses with the pions in the
final state were also considered in the paper for the first
time.
Radiative corrections to the chiral amplitude were cal-

culated only for some subprocesses of type 2→ 2 [13].
The magnitude of the cross sections (21)–(23) is of the

order of αn/µ2	 αn/s, n= 4, 5, 6, where µ2 =max(s1, s2)
is large enough to be measured and does not depend
on s. The strategy of the calculation of the cross sec-
tion, using the helicity amplitudes of the subprocesses
2→ 3, is described above and can be implemented into
numerical programs that take into account details of the
experiments.
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